
Understanding the scientific

software ecosystem and its impact:

Current and future measures

James Howison1,*, Ewa Deelman2, Michael J. McLennan3,
Rafael Ferreira da Silva2 and James D. Herbsleb4

1School of Information Studies, University of Texas at Austin, Austin, TX 78701, USA, 2USC

Information Sciences Institute, Marina del Rey, CA 90292, USA, 3Research Computing, Purdue

University, West Lafayette, IN 47906, USA and 4School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA 15213, USA

*Corresponding author. Email: jhowison@ischool.utexas.edu

Software is increasingly important to the scientific enterprise, and science-funding agencies are
increasingly funding software work. Accordingly, many different participants need insight into how
to understand the relationship between software, its development, its use, and its scientific
impact. In this article, we draw on interviews and participant observation to describe the infor-
mation needs of domain scientists, software component producers, infrastructure providers, and
ecosystem stewards, including science funders. We provide a framework by which to categorize
different types of measures and their relationships as they reach around from funding, develop-
ment, scientific use, and through to scientific impact. We use this framework to organize a
presentation of existing measures and techniques, and to identify areas in which techniques
are either not widespread, or are entirely missing. We conclude with policy recommendations
designed to improve insight into the scientific software ecosystem, make it more understandable,

and thereby contribute to the progress of science.

Keywords: science; software; measurement; policy.

1. Introduction

Modern science depends on software. Software analyzes
data, simulates the physical world, and visualizes the
results; just about every step of scientific work is affected
by software. Although the use of commercial software is
important in science, scientists, software developers, and
students themselves are developing a significant amount of
software used today in an academic setting. This software
is funded primarily by the national funding institutions
such as the National Science Foundation (NSF),
National Institutes of Health, the Department of Energy
(DoE), the Defense Advanced Research Projects Agency
and their analogs globally.

Scientists, software and infrastructure providers, and
funders have a wide range of information needs about sci-
entific software, as we will discuss in detail below. Yet there
is little data available to meet these needs. In this area, as in

other areas in research evaluation, data availability is one of
the ‘critical issues for the evaluation of R&D programs and
policies today’ (Rogers 2013: 2).

Part of the complexity in measuring the scientific

software ecosystem comes from the way that different

pieces of software are brought together and recombined

into workflows and assemblies. In this way, software

runs ‘on top of’ other software components in a layered

architecture, effectively hiding the components from users

but gaining services and benefiting from those compo-

nents. Each component is produced separately, providing

services to each other but also starting, changing, and

sometimes ending on different schedules. For this reason,

we speak of a scientific software ecosystem. Adding further

complexity, scientific software interacts with the scientific

reputation economy, especially the publication system. To

measure the scientific value of software and to guide its

Research Evaluation 24 (2015) pp. 454–470 doi:10.1093/reseval/rvv014
Advance Access published on 27 July 2015

� The Author 2015. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

XPath error Undefined namespace prefix


production and use, measurement must occur in many dif-

ferent places throughout a scientific software ecosystem.
Accordingly we address four questions:

(1) What do people in different roles in the scientific

software ecosystem want to know?
(2) What measures are available and in use?
(3) What is not yet measured, why is it not measured,

and how might it be measured?
(4) What policy options are available to improve the

situation?

We draw on literature review and qualitative fieldwork,

consisting of semi-structured interviews and participant ob-

servation. We have described our interviews and the inter-

view protocols elsewhere Howison & Herbsleb (2011);

Howison & Herbsleb (2013); in total we conducted 35-h-

long interviews. While material from these interviews has

formed the empirical basis for previous papers, we make

use here of the considerable material that came out in the

interviews on the needs expressed by the interviewees for

information about how the software they developed, main-

tained, or administered is actually used. Indeed, it was the

capture of this material that did not fit the themes of the

previous papers that inspired us to do the work reported

here. Our participant observation consisted of organizing

four workshops over 4 years, and participating in three

others. In addition, the second and third authors each

have over 15 years experience in the scientific software eco-

system. Our literature review consisted of both the formal

and the gray literature. In particular, we drew on reports

from workshops focusing on the scientific software ecosys-

tem, often sponsored the US NSF (e.g., Carver 2009;

Stewart, Almes and Wheeler 2010; Stodden et al. 2010;

Berente, Howison and King 2013).
Our method was guided by the work of Weick (1989).

Weick describes theory development as ‘disciplined imagin-

ation’ directed to ‘sensemaking’ and subject to iterative se-

lection criteria, especially the characteristic of ‘plausibility

and interestingness’ that develops through this selection

process. In practice, we recorded each interview, then dis-

cussed the interview among ourselves, producing memos

that described our evolving understandings. Those memos

then form a guide to returning to the interviews to re-listen

and confirm interpretations. Our participant observation

allowed us to bring our evolving understandings to the

communities, engaging in ‘member checking’. In this way,

our interpretations were often challenged, prompting us to

seek further discussion (and sometimes interviews); we

also shared drafts of this article with key informants,

incorporating their insights. Sometimes, though, members

found our interpretations useful, helping to recapitulate

their own experience, and this helps confirm our interpret-

ations as ‘plausible’ and ‘interesting’.
Wherever possible we highlight real-world examples of

existing measurement to illustrate the measure we are

discussing, pointing to Web sites and publications to
assist the reader in pursuing further detail about a meas-
urement technique and its successful implementation. It is
important to note that our interviews were limited to par-
ticipants in the USA, and our participant observation pri-
marily occurred in the USA, although some authors have
spent many years working on projects with European and
other international partners.

The article is organized as follows. First, we examine the
information needs of different roles in the scientific
software ecosystem. We then abstract a framework by
which to categorize different types of measures and their
relationships. We use this framework to organize a pres-
entation of existing techniques and to identify areas in
which techniques are either not widespread or are
entirely missing. We conclude with policy recommenda-
tions designed to improve insight into the scientific
software ecosystem, make it more understandable, and
thereby contribute to the progress of science.

2. Roles and information needs in the
scientific software ecosystem

Our qualitative fieldwork and participant experience led us to
identify four different roles that our informants occupied in
the overall scientific software ecosystem, each linked to a need
for different kinds of insight and thus measurement. The four
roles are: (1) scientist end-user, using software to undertake
domain science, (2) producing and distributing scientific
software components, (3) administering scientific software in-
stallations, including HPC centers and software distributions,
and (4) having concern over the overall functioning of the
scientific software ecosystem, including senior scientists and
science policy-makers such as funding agencies and their per-
sonnel. Any individual might well play more than one role at
a time, or the role might be played by a group of individuals.

2.1 Scientific end-user

Scientists engaged in domain science are key players in the
scientific software ecosystem. The scientists in this role we
spoke with were driving forward their scientific investiga-
tions, and in the process drew together software artifacts to
collect, manage, format, analyze, model, and visualize data,
with the ultimate goal of publishing their results in the sci-
entific literature. Scientific end-users are, from time to time,
also writing software code, especially ‘glue code’ that links
together software components obtained from elsewhere, as
well as custom components that are intended for local use
and not for redistribution (although they may be shared on
request) (e.g., Brown et al. 2007).

From the perspective of the scientific end-user role, the
scientific software ecosystem is a provider of software that
facilitates and supports particular studies. In the words of
one informant, the key thing is to ‘get the plots out’.

Understanding the scientific software ecosystem and its impact . 455



Toward this goal, end-user assemblers are concerned with
the availability, quality, and usability of outside
components. In addition, they are concerned with the like-
lihood that chosen components will continue to be scien-
tifically useful, and that the components will continue to
work with the other software components that the end-
user has assembled to accomplish their scientific work.

Scientific end-users are interested in understanding what
software and configurations were used in the production of
their scientific results. In larger labs or collaborations, this
means understanding and recording what software others
used and how they used it. Yet it also means being able to
accurately recall what they themselves used in the produc-
tion of a specific result. Interestingly, while many inform-
ants called this an interest in reproducibility, their
emphasis was on understanding the past to revisit it as a
basis for future extension; end-user scientists want to
record and recover what was used to work with the code,
not simply to replay it.

Those in the scientific end-user role are interested in
what other scientific end-users are using. When we asked
participants why they used particular components, they
indicated that they had an easier time keeping the focus
on the scientific contribution of a paper if the software
used was well understood by reviewers. And this meant
using software used by many other scientists in their
domain. A second reason that scientists are interested in
what other end-users are using is that seeing others
choosing to change the software used could indicate a
shift in their methods, always of concern to scientists inter-
ested in the scientific frontier. Finally, widely used software
was both a signal of its quality and an assurance that staff
and graduate students with appropriate skills could be
found and would find sufficient experience among their
peers to resolve software questions quickly and maintain
a focus on their science.

Scientists, as we will discuss below, think beyond their
particular labs, but the key concerns expressed in the end-
user role involved answers to these questions: What is the
cost of the software (monetary, amount of resources needed
to install, maintain, amount of time needed to learn the new
software and integrate it into my methods)? What other
software do I need to install, configure, or develop to use
this software? If I make the investment of time and re-
sources in deploying and using this software, who will
support it, and how helpful they will be if I run into
problems? How often is the software updated, and will I
have to upgrade? Will this software still be around next
year? What responsibilities (such as licenses or citation
requests) does my use of this software bring to me? Who
else is using this software (and the methods it enables)?

2.2 Software component production

A second ecosystem role is that of producing scientific
software components and releasing them so that others

might use them. Our informants here ranged from individ-
uals to teams (both called projects for simplicity)
producing artifacts that were used by only a few others
to those used by entire disciplines. The projects we spoke
with were often funded by grants, such as through the
US NSF or DoE, but others were undertaking component
production as part of a parallel software practice,
rewarded solely by the reputation benefits of publishing
papers about their software and the reputation derived
from users’ appreciation of their software. Some software
that is eventually shared begins as software designed
purely for the personal use described above. Sometimes
this software stays within the confines of a single labora-
tory or group, but sometimes, it is shared with others and
potentially broadly adopted, thus making the scientist part
of the software ecosystem (e.g., Van de Geijn 1997).

In some cases, the software is developed in close collab-
oration between domain scientists and computer scientists,
each conducting research. Computer scientists are using
real-world problems to further understand the behavior
of applications and the computer systems they run on.
They develop new algorithms and incorporate them into
software that is then used by the domain scientists for their
research. A challenge for computer scientists is to abstract
the problem as much as possible so that their solu-
tions and software can be broadly used, potentially in a
number of domains. Such is the case with the Pegasus
Workflow Management System (Deelman et al. 2005),
which develops workflow technologies that enable the exe-
cution of complex workflows in distributed environments.
Pegasus started out as part of a project that targeted the
gravitational-wave and high-energy physics community
(e.g., Deelman et al. 2004). However, the solution was
generic enough that it was adopted by astronomers, earth-
quake scientists, bioinformaticians, and others.

The measurement concerns of software component pro-
ducers centered on what happens to their software outside
the project. In effect, component producers were attending
to their place in the overall software supply chain. This
included an interest in understanding who is using their
software component and what those users are doing with
the code, including how it is configured. These insights are
important to component producers for two key reasons.

First, understanding what happens to the software the
project produces is closely linked to how and why scientific
software projects obtain resources. Projects care about
their scientific impact, both in terms of the number and
type of users their software reaches, and in how their
software contributes to the science that others are
undertaking. For this reason, component producers are
concerned that they had users they either did not know
about or that their users used their software in ways that
were not evident in the scientific literature. One informant
laughed in frustration when discussing how he tells his
funders how many citations his software papers have
received, laughing because he believes that these citations

456 . J. Howison et al.



represent ‘less than 10%’ of those who actually used his
software for scientific work. Software component produ-
cers often (but not universally) use highlighted locations
on their Web sites to appeal to their users to provide cit-
ations and reach out directly for letters of support when
applying for grants.

Second, insight into what happens to the software a
project produces helps the project to understand what
work to undertake, what should be added or changed
about their components. For some projects (typically
grant-funded rather than open source), this is framed
almost entirely as understanding ‘user requirements’ for
their software. This can be quite broad in nature because
it includes knowing when changes in other scientific com-
ponents ought to affect the project. For example, a change
in a component produced by others that feeds data to a
project’s component might spark a set of bug reports and
require the project to alter code that had, until the ecosys-
tem around it changed, been working adequately. Bietz,
Baumer and Lee (2010) describe this important kind of
work as ‘synergizing’, as a project reacts to its surrounding
ecosystem, in a manner that the ecological idea of adapting
to a changing ‘niche’ helps to think about.

From an ecosystem perspective, then, software compo-
nent producers are interested in ecosystem insight to
answer these questions: Who uses our components and
how, and what are their current challenges and upcoming
computational needs? How have we contributed to the
science of others? Is our work visible in the scientific litera-
ture? With what other components is our software used?
How are those other components changing?

Finally, some projects are managed open source style,
and are successful in attracting contributions from many
scientists, including a long tail of contributors who make
small but substantial contributions. Visibility of individ-
uals’ contributions is often important for reputation and
for justifying time and effort to the various funders of
those making contributions. This raises the relevant meas-
urement question of which scientists have contributed
what functionality to an open project.

2.3 Software distribution and execution managers

A third role in the scientific software ecosystem is those
who provide collections of software that are made avail-
able for end-users to use in their scientific work. Such
software might be made available as a collection for
download to the user’s own computers, or users may
bring their computation to a collection of software
hosted at a software execution environment, including
supercomputers and cloud computing, and the science
gateways that provide access to them (Wilkins-Diehr
et al. 2008). Our informants included participants in two
main examples: SBGrid and supercomputing centers
providing national computational resources.

SBGrid provides a distribution of software for structural
biologists, supported by membership fees (Morin et al.
2013). Member labs receive access to a software distribu-
tion and a set of shared licenses for those packages that
require them. The software is gathered by SBGrid,
packaged appropriately and distributed via periodic
updates. Lab members assemble and run analyses on
their own computing resources on which the SBGrid
software has been installed. SBGrid staff also work as
liaisons accepting bug-reports and, if the issue requires
the attention of the software’s creators, ‘pushing them
upstream’ to the appropriate software component
producer. The work in SBGrid’s software distribution con-
sisted primarily of monitoring projects for new versions,
adopting those into the distribution, including building
them for the target platform, and resolving their
dependencies within the distribution. In addition, the
work involved managing distribution configuration
software designed, so that users can select the particular
versions of packages they wish to use while undertaking
particular analyses.

Supercomputing centers, like cloud computing providers,
distribute software in conjunction with execution environ-
ments. While the software stays local to the center, typically
running on the hardware they provide, it is distributed in
the sense that it is made available to users. The software
provided includes compilers specialized to particular
hardware, middleware libraries that facilitate multiproces-
sor computing (e.g., Message Passing Interface or MPI
stacks) and analysis packages specially tuned to perform
well in the particular computing environment provided
(e.g., a special compiled version of CHARMM, i.e.,
Chemistry at Harvard Macromolecular Mechanics
software). A core concern of supercomputing centers is
the utilization of their computing resources, which are
shared among users; the center seeks to maximize the
ability of their resources to support science, creating a
focus on both attracting additional users and ensuring
that their analyses are computationally efficient.

From an ecosystem perspective, both kinds of software
distributors are interested in ecosystem insight to answer
these questions: Who uses, or doesn’t use, what compo-
nents? Which versions do they use? How frequently do
they update? What new packages are available that
should be included in a distribution or made available
via the grid or cloud environment? These questions are
particularly relevant to understanding when particular
components can be retired, reducing the size of the distri-
bution that must be managed, and freeing up resources for
other work (McLay and Cazes 2012). Those who also
manage computing resources that provide execution envir-
onments are interested in additional questions: Which code
consumes the most computing resources; is it a candidate
for optimization work? Which code leads to more execu-
tion errors? (Hadri et al. 2012). In addition, since both
types of software distribution ultimately seek to contribute

Understanding the scientific software ecosystem and its impact . 457



to scientific impact, either as part of professional identity
or to argue for renewed grants, both are interested in
understanding what science they have facilitated, in
much the same manner as software component producers.

2.4 Ecosystem stewards

Many of our participants were also concerned with the
overall functioning of the ecosystem and its contribution
to science. These concerns were particularly salient for
project officers at funding agencies, such as the NSF or
DoE, but interest was also evident among other parties,
including senior domain scientists reflecting beyond their
individual work and thinking of their fields as a whole.

Concerns expressed here focus on questions about the
operation of the ecosystem as a system that takes resources
(time, money, and attention) and affects the conduct and
output of science, both as a whole and in individual fields,
complemented by interest in how the behavior of the
system can be influenced. These are more traditional ques-
tions of research evaluation directed to understanding the
impact of funding and programmatic decisions.

The cyberinfrastructure vision, expressed in the ‘Atkins
Report’ and instantiated for the scientific software ecosys-
tem in the NSF call for Software Infrastructure for
Sustained Innovation (NSF SI2), envisions software not
only advancing science but doing so with growing effi-
ciency over time (Atkins 2003). Key to this is a belief
that software ought to evolve toward a shared platform,
with components that are reused as widely as possible as
both end-users and component producers coalesce around
particular pieces of software. The literature on software
platforms outside science has called this ‘coring’ and
‘tipping’ (Gawer and Cusumano 2008) by which a commu-
nity discovers its shared functionality and coalesces
around packages which provide it, leading to efficient use
of resources through economies of scale. Coring also
results in increasing overlapping usage that facilitates
more transparency in science, leading to greater quality
and correctness, as more eyes and effort are directed to
the same pieces of code that are sustained and evolve
over long periods of scientific usefulness.

Coring toward platforms can be contrasted with its
opposite, often perceived by informants: dysfunctional
chaotic churn, with many projects with few users, each
having short lives ending with their initial grant funding,
disconnected and parallel user communities, stubbornly
unchanging incompatibilities, and periodic and seemingly
uncoordinated attempts at ‘re-boots’. Underlying this is a
concern that opportunities are missed and that the
progress of science is slowed (e.g., Stewart, Almes and
Wheeler 2010).

These general concerns suggest a set of specific questions,
focusing on overall patterns and emergent patterns within
the ecosystem, including: What funding has gone toward
software production? How many users or user communities

do projects have? What are the scientific impacts of that
use? Are user numbers growing? Do projects have sufficient
resources and skills to handle their growth? Which projects
have overlapping functionality? How long do pieces of
software and projects persist? Do we have disconnected
user and developer communities? Are particular compo-
nents, or layers of components, missing? Which code is
often used together; are the projects and people producing
these components communicating appropriately? How can
we sustain critical software?

Along with these questions are questions of how to in-
fluence the ecosystem, including questions of tipping
points leading to coalescing use as well as direct policy
interventions encouraging the use of particular compo-
nents. Here there is a clear tension between a desire for
flexibility and freedom, linked to expectations of scientific
innovation and desires for authority structures and
coordinating control. Questions of influence include
those like: Which funding programs, and which require-
ments in their calls, have resulted in widely used software
and substantial scientific impact? What are the features of
fields that have achieved greater coalescence? Which
journals and conferences have exemplary policies? How
is software work viewed within hiring and evaluation prac-
tices, such as tenure cases?

3. Current and missing measures for the
scientific software ecosystem

The interests and information needs discussed above are
many and varied; they extend throughout the lifecycle of
the creation, distribution, use, and evaluation of software
components. To organize our discussion below, we present
a simple process model framework of software in science,
shown in Fig. 1.

Resources are devoted to the production of scientific
software. End-user scientists (directly or indirectly) use
software components to undertake science, resulting in
science impact. Science impact then justifies resources,
either prospectively (anticipated impact justifies initial re-
sources) or retrospectively (scientific impact justifies
ongoing resources).

Many of the questions discussed above touch on
multiple parts of the framework, making it a useful way
to organize our discussion of measurement techniques. For

Software Use

ImpactResources

Figure 1. A process model of software in science.

458 . J. Howison et al.



example, ecosystem stewards (such as funding agency
program officers) may be primarily responsible for
allocating resources, but to do so effectively, they require
insight into each of the areas, from the software produced
(or proposed) to its scientific impact. Component produ-
cers are focused on understanding the work needed and
arguing for the provision of resources to do that work, but
to do so, they need to illustrate the scientific impact of their
software, via its use (or prospective use) in science.
Scientific end-users are interested primarily in document-
ing their internal use of software (and in the scientific
impact that use might have) and seeing what others are
using, but are also interested in how the software is
produced and resourced, for reasons of quality and the
sustainability of the software components they select.

As we will see, many of the metrics currently employed
focus only on one element in our process model, limiting
their broader usefulness. Improving the ability of metrics
to assess the overall process (extending ‘around’ the
elements in the model, following the process) is therefore
key to our conclusions and policy recommendations. In the
discussion below, we examine each of the four connections
in the framework above. Yet some of these connections are
easier to measure at present; thus, our discussion is
unbalanced, substantially longer for some than others.
We return to this issue in the conclusion, drawing on it
to highlight the need for measure development in and
across each part of our framework.

3.1 Resources to software

Understanding how scientific software has come to be built
is a crucial first step in measuring the scientific software
ecosystem. We see two starting points for this inquiry: one
could start with scientific software packages and has who
has made contributions over time and how those partici-
pants were motivated (and in some cases, funded). Or, one
could start with funding sources and ask how each has
resulted in software used by scientists. Both approaches
share a need for data about the work of building
software: who did what, when.

The first strategy was employed in Howison and
Herbsleb (2011) which examined the software used to con-
struct three focal papers, collecting data on motivations
and funding through interviews. They identified six
models of software production in science, primarily distin-
guished by the key motivations: (1) direct monetary
rewards (commercial software, employed software devel-
opers), (2) academic reputation (incidental software,
driven by direct scientific need), (3) parallel software
practice (scientific need enhanced by publishing ‘software
papers’ alongside domain research), (4) a software subfield
(direct reputation for software work), and (5) hybrids such
as dual-licensing and software work within large collabor-
ations (software as direct scientific contribution). The re-
sources used in the production of software work, therefore,

did include direct grants for software work, but also
included a diverse range of resource origins, including
money allocated from domain grants, collaboration
service work, and the ostensibly ‘free-time’ of scientists
pursuing their direct research, and thus funded by the
diverse range of funding sources that underlie any scientific
career, from instructional budgets, grant overhead, the
willingness of scientists (and graduate students) to work
‘overtime’, as well as domain science grants and
software-specific grants.

Interview approaches are useful for qualitative insight
but do not scale to collect data at the scale required to
understand most of the questions posed above. A
promising mid-level approach is possible when the
history of work on a software product is available in
source code control systems. Systems such as CVS
Subversion, and git (which underlies github) store each
change to the code over time (‘committing’) and keep
track of who added that change to the repository (‘com-
mitter’). After accounting for the specifics of a project’s
workflow, the identity and institutional location of the
committer can stand as a proxy for the source of resources
that has supported the production of that software. In
research outside science, this approach has been successful
in understanding the involvement of different companies in
providing resources for open source software development,
using the organizational domain of the email address
making a commit (e.g., Wagstrom et al. 2010).

One advantage of these repositories is the potential to
identify episodes of contribution and to relate them to
sources of support. By starting with the full list of
‘commits’, one can seek background on the work that
lead to those contributions, one can avoid the over-gener-
alization that is commonly a feature of memory, as done
for studying open source development outside science in
Howison and Crowston (2014). In this way, effort
contributed to projects from various sources, including
what might be called ‘dark effort’ that cannot be allocated
to any particular source of funding.1

Other approaches start with research funding, specific-
ally the administrative data about grant making (Rogers
2013), and attempt to track the software products that
have resulted. More specifically the US NSF recently
adjusted its reporting to specifically include software
products along with other research outputs such as publi-
cations, Web sites, and data sets. Accordingly, agencies are
able to build systems that connect their grant funding to
specific software products. Efforts in this area include cata-
logs produced by the NSF’s Advanced Cyberinfrastructure
program and the OpenCatalog run by DARPA. These
efforts have tended to be limited to programs that specif-
ically fund software but could, in theory, be extended to all
grant funding organizations.

Tracing the connection between research funding and
software produced could draw on existing techniques
used to connect funding and other contributions, especially

Understanding the scientific software ecosystem and its impact . 459



publications. By examining publications, researchers
can draw on the inclusion of funding acknowledgment
statements, typically required by funding agencies and/or
conflict of interest disclosures, to connect publications with
funding. Recently some bibliographic databases have
begun to systematically extract funding acknowledgment
information and present it more directly (Rigby 2011).

Collecting and analyzing funding acknowledgment for
publications is much easier than doing so for software.
First, funding agencies have insisted on funding
acknowledgments in publications for many years; it is an
established and expected practice. Second, bibliographic
databases provide centralized collections of publications
for analysis. With software, neither of these conditions
are in place: scientific software packages are often not
collected into large collections, but distributed individu-
ally, and it is not clear whether a funding agency
acknowledgment in an application or its source code is
required and where it ought to be located. For example,
some projects make an acknowledgment of funding on
their project Web sites, rather than embedding that ac-
knowledgment in the source code itself.

3.2 Software to use

The distribution and use of software in science is import-
ant to measure if we are to address the information needs
describe above; it is also surprisingly difficult. One-time
surveys can play a role but they are costly and impose a
significant burden of response on already busy ecosystem
participants; even then as one-shot data collection surveys
do not produce ongoing insight. Accordingly, we empha-
size on measures which draw on side effects of software
activity. There are, as we see it, four opportunities to
observe software use, or reasonable proxies of use: (1)
when the software is obtained by users, (2) when users
seek support in its use, (3) when the software actually
executes, and (4) when software workflows and assemblies
are stored.

3.3 Measuring distribution

When software is distributed commercially, the require-
ment to pay money for a software license has two impli-
cations: the first is that the software producer learns the
identity of its users, while the second is that the value of
money makes it less likely that a user will pay for software
and then not use it (especially when it comes to updates).

When software is distributed for free download, or
simply installed at supercomputing centers, there is no
automatic record of the user obtaining the software. This
is in contrast to software sold commercially, and even with
open source software obtained by downloads from
repositories, or through package management systems.
The lack of automatically accessible data means that
projects (or others interested) must make specific efforts

to understand who has obtained their software. There are
two key techniques used to accomplish this: the first is
counting downloads and the second is registering those
seeking downloads.

Download measurement involves analyzing the log files
created when the software is downloaded, either directly
from a common location or through a package manage-
ment system. A first issue arises when software is
distributed in multiple channels: such as download direct
from a project’s Web site, inclusion with another software
package, inclusion in a distribution, installation directly at
an execution site, or copying from friends. In large
projects, one channel may dominate sufficiently to stand
in for a minimum metric, but many scientific software
projects have relatively small potential market sizes, and
so missing entire distribution channels may disproportion-
ately understate total distribution.

More problematically, distribution is a poor proxy for
use. Many downloads may not result in use at all: the
downloader may try the software and find it wanting for
some reason. Moreover, many downloads may result from
nonscience or even nonhuman distribution, as when a bot
downloads the software, perhaps as a result of web
spidering.

Finally, when software is updated and new versions
released, actual users may re-download the software.
Thus, if downloads are not adjusted for new releases,
download figures will overstate use by orders of magni-
tude. This is both problematic and an opportunity. In
these cases, downloads spike immediately after a
download as regular users update the software.
Techniques exist to use this understanding to convert
time series of raw download numbers into estimates of
installed base and estimates of the experimentation (and
thus the conversion of downloaders into regular users).
Fig. 2, from Wiggins, Howison and Crowston (2009),
shows the logic.

Passive, distribution-focused techniques such as those
above may, with appropriate adjustments, provide aggre-
gate figures of the number of users. For other purposes,
however, including extending around the framework
above, there is a need to understand the identities of
users, both to reach out and understand their usage envir-
onment and to seek evidence of scientific impact
(see below). Registration of users asks those seeking the
software to provide contact details before a registration
link is provided, usually requesting basic information
such as a name, email address, institution, and per-
haps domain science field (e.g., the VMD project
from UIUC, <http://www.ks.uiuc.edu/Development/
Download/download.cgi?PackageName=VMD>). A
similar function is provided when code is described in a
publication but made available ‘by request to the author’;
this technique may chill some exploration of the software,
but at least the producer has a clear idea of those that are
really interested. As with downloads, however, registration

460 . J. Howison et al.

http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD
http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD


in this way counts only distribution and not use directly.
Moreover, the request can be viewed as annoying by po-
tential downloaders, even invasive of a user’s privacy,
especially in highly competitive fields. Nonetheless, it
may be reasonable to prioritize creating a list of likely
users, even at the cost of putting off a few potential
users, for the project or for those who have funded it;
the alternative is either little real understanding of use or
costly efforts to survey a user base that quickly goes out of
date.

3.4 Measuring support

A question asked on a project mailing list can be a useful
source of data about software use. It reveals the identity of
the user, and the content of a question can reveal informa-
tion about the nature of the use, even extending to
understanding which surrounding components are comple-
mentary to a software component. Accordingly, measuring
contacts from users is a proxy of use employed by scientific
software projects. Such contacts may come through
a variety of formats, from mailing lists, forums, bug-
trackers, and direct email. In some cases, software pro-
viders assign tracking numbers to their support questions,
thus potentially making it easier to track the support
provided for the software. An example of such a
software project is HTCondor (Litzkow, Livny and
Mutka 1988). Projects may also count users who are not
posting but are listening, such as when projects tout the
number of subscribers to their project mailing lists.

As a proxy for use, measuring activity has both pros and
cons. It is reasonable to assume that those subscribing,
updating, or asking questions are more likely than an-
onymous downloaders to actually be running the
software, as some downloaders don’t continue to use the
software (Wiggins, Howison and Crowston 2009).
Similarly, while it is easy to interpret a high number of
support requests or bug-reports as indicating software
that is difficult to use (perhaps due to poor documenta-
tion), the effort required to post a question indicates a
sincere desire to use (or even improve) the software and
thus that the asker values it. Conversely, however, only
software that is user-facing is likely to generate active

support discussions; infrastructural software or develop-
ment libraries that are drawn on by developers of other
software may be very widely used without generating any
widespread support discussion (consider how many users
of email clients are aware of the library that actually inter-
acts with a mail server, or how many developers use a
library for string manipulation without encountering any
issues.). In fact high-quality software may disappear by
these measures because it ‘simply works’.

In addition, counting raw numbers of user messages to a
project is subject to the same sorts of double counting that
counting downloads without adjusting for versions is: a
single user may generate many messages. Thus counts of
messages used as a proxy for use ought to be adjusted by
normalizing by identifiers, such as email addresses or real
names. Subscription-based numbers can be normalized by
employing mailing-list probes that automatically unsub-
scribe those with bouncing emails or those that fail to
respond to a prompt.

3.5 Measuring software execution

In theory, software can report a great deal about its own
use, beginning with the simple fact that it ran and extend-
ing outward to describe the circumstances under which it
ran. This is because a program can, in the course of its
execution, send a message to a central server. That message
might simply report that the software ran, as described for
the Globus software by Thain, Tannenbaum and Livny
(2006). That message can, however, be more complicated.
For example, desktop programs, including Microsoft
Word, often ask users if the program can generate and
communicate logs of memory and execution state when a
program crashes, providing very useful data to developers
(albeit at some risk of overload). Programs may also have
useful information about the environment in which they
execute, including the operating system and version, or
other ‘nearby’ software such as any virtual machines that
a component is interacting with or other runtime software
dependencies.

An excellent example originating outside science is the
package ‘popularity contest’ available for the Debian and
Ubuntu Linux distribution (http://popcon.debian.org/).
This package examines the user’s file system and local
package database to determine which packages have
been installed and, by observing the last date particular
files were accessed, how often the package was run.
Results are reported via an anonymous UUID, stored tem-
porarily and publicized only in aggregate. The project
README explains how these data are used by the main-
tainers of the distribution to make decisions about which
packages to prioritize.

Scientific end-users may see data collection efforts as
overly invasive, arguing that they affect performance and
communicate sensitive data (Thain, Tannenbaum and
Livny 2006). In Structural Biology, for example, the

Figure 2. Converting download time-series into estimates of
the installed base (Wiggins, Howison and Crowston 2009).

Understanding the scientific software ecosystem and its impact . 461

http://popcon.debian.org/


mere fact that a lab is investigating a particular molecule
communicates that they think it is tractable, revealing the
results of months of offline work and providing a competi-
tive leg up for competitors (Howison and Herbsleb 2011).
On the other hand, projects may see concerns where there
are, in fact, few. Thain, Tannenbaum and Livny (2006)
report that while their survey revealed broad concerns
about privacy, actual users were not concerned about re-
vealing their own use; in fact users asked to be added to
illustrations of global Globus use. This intriguing result
suggests that privacy concerns are more abstract than
concrete, at least for this particular user community; none-
theless, community support is paramount.

A second class of runtime observation is instrumenting
locations such as supercomputing or cloud computing en-
vironments, where the code (and data) is brought together
to execute. Unlike personal or lab infrastructure, these
shared computing resources are not owned by the scientists
undertaking the computation. Moreover, these resources
are made available under particular conditions of use; pro-
viders have legitimate reasons to understand what is
executing on their platforms. Supercomputing centers
have traditionally focused on reporting resource availabil-
ity and utilization rates, but have not sought to examine in
detail nor report on the software used by scientists ‘inside’
computational jobs. For example, the OSG metrics and the
XSEDEMetrics on Demand (XDMoD) project can record
and analyze usage via a variety of parameters, including
which machines, which accounts, and even which scientific
field used computational cycles, but don’t record data
about the software run inside computational jobs (e.g.,
Barbera et al. 2012; Furlani et al. 2013).

Recently, however, a number of execution environments
have moved toward understanding what software is being
run within the computational jobs executing on their
systems. These inquiries are driven primarily by the
desire to understand how efficiently computational re-
sources are being used. The Texas Advanced Computing
Center, for example, has begun to collect and report data
on how the specialized and tuned software libraries
(known as ‘modules’) are used in user’s computational
jobs (McLay and Cazes 2012), helping the center prioritize
the maintenance and optimization of most used compo-
nents. Similar efforts have been undertaken with Cray
supercomputers (Hadri et al. 2012).

Science gateways provide customized access to compu-
tational resources for particular scientific domains, making
it easier to find tools that others have created and repro-
duce results. This mode of service-oriented computing is
increasingly successful, including examples such as
HUBzero (McLennan and Kennell 2010), Galaxy
(Goecks et al. 2010), and MyExperiment (Roure et al.
2009). These environments provide both execution and
archiving services, assisting users in the aims discussed
above by offering a repository of tools and workflows,
and an easy way of running them without having to

download, compile, or install any code. Along the way,
the services can collect data about what tools and work-
flows users have accessed, and even what specific users
have run and in what configurations. Currently,
however, the usage agreements and understandings with
users preclude particular uses of these data. Various sites
based on HUBzero, for example, will report an aggregate
number of simulation runs for all tools over time, an ag-
gregate number of runs for a particular tool over time, and
even a breakdown of users by country throughout the
world, but sites will not report information about individ-
ual users or even about the input parameter space that has
been explored by a tool. Services are appropriately con-
cerned with the trust their users hold in them and hold
users’ data confidential.

Nonetheless, the aggregate data that these services
report is extremely useful. HUBzero uses those data as a
factor in an automatically calculated ‘ranking’ for a tool,
which is a measure of quality on a scale of 0–10. The
higher the usage, along with user reviews, citations, and
support activity associated with a tool, the higher the
ranking. Tools with high ranking tend to bubble up in
searching and browsing activities, while those with low
ranking are harder to find, a characteristic likely to lead
to others preferentially discovering the tool and thus to
community coalescence around tools. Furthermore, such
aggregate impact metrics are a strong incentive for re-
searchers to contribute new tools to the repository. On
HUBzero sites, each contributor has an area on his
profile showing the impact metrics for all of his contribu-
tions, including the number of users that have run a tool,
the number of runs that were performed, and the number
of citations for the tool in academic literature.
MyExperiment has similar profile pages showing a user’s
contributions, along with interests, friends, groups, and
credits from other users who have reused their assets.
Researchers use these data as part of their story of scien-
tific impact, such as in tenure and promotion cases and to
argue for funding for continued research (https://nanohub.
org/members/3482/usage).

Some services provide detailed information about a
user’s own activities, including the data files accessed, the
tools used, and the way that computations were chained
together. For example, Galaxy provides this sort of
detailed provenance information as a way of helping
users to build new workflows. Users can experiment with
their data, see what works, annotate steps as they move
along, and create new workflows automatically based on
the steps recorded in detailed histories. Users may choose
to share their data sets, histories, and workflows within
Galaxy to other specific users or to the world as published
entities. Galaxy ‘pages’ provide a complete description of
each computational experiment, including notes and
diagrams, and embedded data sets, workflows, and
histories. MyExperiment supports a similar concept
through ‘packs’ of materials that include the workflow,

462 . J. Howison et al.

https://nanohub.org/members/3482/usage
https://nanohub.org/members/3482/usage


results from running the workflow, presentation materials
describing the project, and publications that may have
resulted from the effort.

Full access to the extensive user data gathered by these
services can be studied to provide insight across the scien-
tific ecosystem. For example, nanoHUB.org, the Web site
that spawned the HUBzero platform, has been active since
2002 and has grown to more than 300,000 users each year;
therefore, it has a wealth of user interaction data. These
data have been shared with social scientists under controls
satisfying the user privacy policy. One study has shown
that tools originally created for research tend to migrate
into educational settings, and that the median time for
adoption is less than 6 months (Madhavan, Zentner and
Klimeck 2013). Another study has shown different prin-
ciples of team formation in the nanoHUB user community
and has extracted the characteristics of successful teams
(Contractor 2013).

A further possibility is assessing use by mining archives
of scientific workflows, such as those required for publica-
tion in some fields (e.g., McCullough, McGeary and
Harrison 2006). The emphasis for these archives has been
on reproducibility rather than measurement per se
(Stodden et al. 2010); typically, the expectation is that a
finalized, published piece of research is stored or associated
with the workflow that underlies the results. Some efforts
in this area attempt to automate the entire process, from
data analysis, generating figures, integrating them with the
paper text, and producing the PDF, an approach known as
an executable paper (http://www.executablepapers.com).
Once an archive contains many records of research
stored in this manner, however, mining its archives to
identify particular packages that have been used would
be possible, with the added advantage of directly
associating that use with the associated publication, thus
reaching around the cycle described above, linking use and
scientific impact.

Finally, surveys of users (and potential users) are
possible, seeking an indication from a body of scientists
as to who has used which software and for what purpose.
One challenge is establishing an appropriate sample frame.
For example, it would be problematic to simply survey a
user community, since that would not represent the input
of nonusers or ex-users. Similarly, open calls for respond-
ents would seem far more likely to attract responses from
those already using the software. A second, related chal-
lenge is coping with motivation of participants to respond.
Survey responses are time-consuming and hold little intrin-
sic interest for those being surveyed. Systematic bias
stemming from enthusiastic users (or unenthusiastic ex-
users) is likely to be more motivated than nonusers to
respond to a survey request from a project. One possibility
might be arranging a survey around a convenient but
widespread sample frame, such as all submissions to a
journal or a conference. Nonetheless, surveys are difficult
vehicles through which to obtain detailed understanding of

usage, given the limits of respondent’s specific recall and
the trade-off between response rate and requested detail.

3.6 Use to impact

While impact in research evaluation means both impact on
science and broader social and economic impact (Penfield
et al. 2014), we focus on science impact because broader
impacts of research infrastructure are mediated by their
ability to support scientific research.

A common approach is for providers of funding,
software, and execution resources to ask their users to
help them report impact, typically by requesting that
users tell the providers which publications have been
facilitated. Scientists and others are familiar with
requests like this from the grant funding process;
grantors request periodic and final reports that summarize
how resources have been turned into impact, typically by
requesting that funded projects provide lists of publica-
tions and other contributions that have been supported.

Analogous requests from providers of software packages
to their users suffer from two problems, however: motiv-
ation and specificity.

Motivation for acknowledgment is problematic because
unlike providers of funding, providers of software have little
leverage; requests for acknowledgment are dependent on
appealing to the better natures of users and intimating
that the continuance or improvement of the project is at
stake. Current practice in science does not take advantage
of the possibility offered by software licensing, whereby the
use of software could be made contingent on users
providing appropriate acknowledgment, just as is done
with Creative Commons Attribution licenses and the
Apache Foundation’s NOTICE source code licensing
policy (http://www.apache.org/licenses/example-NOTICE.
txt).

More problematic still, however, is the question of spe-
cificity: simply providing a citation of an article does not
say much about how that research benefited from the par-
ticular piece of software, nor does it suggest that the
research might not have been possible without that piece
of software (a case much more easily made for the provi-
sion of research funding). Finally questions of ‘fractional
credit’ arise (Katz 2014): if it is useful information that a
research paper was facilitated by a piece of software used
directly, to what extent is it also useful to imply a contri-
bution by those who provided software dependencies
drawn on by the software directly used? If so, how might
one reallocate the credit accruing among the dependencies?
These questions, however, are likely dwarfed by the diffi-
culty of simply having users provide this information in the
first place, especially as a project grows beyond a small
group of users. Moreover this system would suffer from
gaps in data: if any project did not ask its users then the
chain of credit would be broken for lower dependencies.

Understanding the scientific software ecosystem and its impact . 463

http://www.executablepapers.com
http://www.apache.org/licenses/example-NOTICE.txt
http://www.apache.org/licenses/example-NOTICE.txt


An alternative approach is to view publications as a data
set that can be mined to identify software used in the prep-
aration of the publication and thus likely to have
contributed to the science in some way. Scientific publica-
tions themselves do contain significant data on software
use. These come in three forms: citations, mentions, and
artifacts inserted in the paper (such as graphs). Using cit-
ations to identify software use and thus argue for impact
means analyzing citation lists for publications that refer to
particular software packages. This is possible when
projects have written ‘software publications’ or ‘methods
papers’ about software packages and their users have come
to understand that they ought to cite these papers. When
this holds, it ought to be possible to use automated biblio-
metric systems to extract such citations and connect them
to the software packages they indicate. Unfortunately, the
practices of citation to software vary considerably from
field to field Howison and Bullard (in press) and appear
to miss significant software. Howison and Herbsleb (2011),
for example, found that projects did not formally cite
entire classes of software, including commercial software
(even when papers are published) and software developed
in-house, either by the authors or by software developers
in a collaboration. Moreover, some venues actively dis-
courage citations to software packages, and when a
paper has used many packages, attempts to mention
them all could lead to unacceptably long citation lists.

A second form of evidence in the publication record is
mentions. By this we simply mean the use of package
names in the free text and footnotes of publications
rather than formal citations to software publications. In
some fields, such as bioinformatics, it is a common practice
to list programs and their versions in the ‘materials and
methods’ sections of papers in a manner similar to
chemical reagents or instruments. These mentions may
be appropriate to measure use and thus impact in the lit-
erature, particularly when the evaluation research question
begins with a list of packages to look for.

The third form of evidence in publications is through the
inclusion of characteristic artifacts that the software
creates. By this we mean figures and tables generated by
particular software packages, especially graphics and stat-
istical packages. Just as one can recognize default tem-
plates from, say, Microsoft office, it should be possible
to train machine learning algorithms to identify plots
produced by particular software. In its limited area of ap-
plication, this technique could be quite powerful, allowing
us to chart the use of particular software through the
history of the published literature. A number of research
projects are investigating this, including the Impact Story
project (Piwowar 2013) and some of the current authors
Howison and Bullard (in press).

The nanoHUB project has developed an approach to
identifying impact in publications that mix automated
analysis with manual inspection by experts to judge the
extent to which a publication truly drew on the software

or services provided by nanoHUB and thus ought to be
claimed as a contribution. This process starts by gathering
potential citations, primarily through Google Scholar
searches and automated alerts for specific keywords
(such as ‘nanoHUB’ and unique tool names). The resulting
citations are fed into a web-based system created on
nanoHUB to manage the remaining workflow, illustrated
in Fig. 3.

Various staff and graduate researchers each tackle a
subset of the citations. First, they track down a PDF
document containing the full text of the article, and
perform a cursory reading to determine whether or not it
actually pertains to nanoHUB. Any false positives are
eliminated from consideration. Records for the remaining
articles are classified according to publication type (journal
article, conference proceedings, thesis, technical report,
etc.), and author names are linked to existing nanoHUB
user profiles. Publications are further scrutinized to see if
the authors are theorists or experimentalists, if the publi-
cation includes data from experiments, and if it references
a particular tool or some other resource on nanoHUB.
Results from multiple reviewers are combined, and if
they disagree, the nanoHUB managing director steps in
for final review and resolves the dispute. Once fully pro-
cessed and approved, citations become visible on the ‘cit-
ations’ page on nanoHUB.org, which also includes
diagrams of coauthorship networks, numbers of secondary
citations, and nanoHUB’s own h-index calculation. So far,
this process has located more than 1,000 citations pertain-
ing to nanoHUB, of which 80% are related to nanotech-
nology research and 30% include data from experiments.
Citations are automatically listed on the page for each
simulation tool that they reference. This helps the users
of a tool, as well as funders, understand the academic lit-
erature relevant to the use and impact of the tool.

Two additional data sources are available, at least in
some cases, each of which can extend beyond publications:
user reviews and qualitative stores of impact. Some
software repositories, including nanoHUB, permit users
to ‘favorite’ software packages and to provide reviews.
Other reviews are available periodically in software
survey papers published in some fields (e.g., Renfro
2004), including those which compare the performance of
different software packages (e.g., Tasker et al. 2008).
Opportunities exist to make this practice more widespread,
but the question of what motivation potential reviewers
have to take the time to provide reviews (outside publica-
tions) would require further inquiry.

A final, but important, source of information about the
connection between use and impact is the collection of
qualitative stories of impact. For example, the SBGrid
project (a software distribution for Structural Biologists)
publishes periodic ‘Member Tales’, discussing how
software has been used in the conduct of the science
in member labs. Other publications include these stories as
well, such as Scientific Computing World and International

464 . J. Howison et al.



Science Grid This Week (isgtw). Undoubtedly, letters of
support or commitment from users that accompany grant
applications include similar stories. Yet these tend to be
one-offs and nonsystematic. Future studies could address
this, creating systematic qualitative studies of the wide-
spread impact of a small number of packages, or assessing
the software usage over a systematic sample of scientists.

3.7 Impact to resources

The final aspect of our framework is from impact to re-
sources, or the manner in which the scientific software
system rewards the achievement of desired impact with
further resources. This is perhaps the least well-understood
link in our framework, yet is crucial as a driver of activity
throughout the scientific software ecosystem.

Commercial software directly links impact and resources
through sales; if a package is not being useful, it will not be
purchased (or at least upgrades will not be purchased) and
the project will receive fewer resources. Yet in science, at
least for noncommercial software, this process is far more
indirect.

Perhaps, the most direct route is when scientists develop
software for themselves or their collaboration, thereby
creating quite local scientific impact through improved
quality and productivity of their own science. In this case,
the route from impact to resources is indistinguishable from

the general, nonsoftware routes. Improved academic repu-
tation leads to a suite of resource rewards from im-
proved employment contracts, potentially lucrative prizes,
consulting/expert witness opportunities, and success in
grant applications. Conceptually, perhaps, the contribution
of the scientist’s software work might be distinguishable
from their domain science contribution, but it would be
extremely difficult to separate in practice, a prerequisite to
measurement.

For cases where the impact is on the science of others,
the route to additional resources is more indirect still. In
particular, it is widely claimed that toolmaking is underre-
warded as a scientific contribution, both in terms of limited
career paths and limited availability of grants/funds for
software work directly (e.g., Stewart, Almes and Wheeler
2010). This is perhaps particularly true when compared
with rewards available for software work in industry
(Howison, Berente and King 2013).

Success in winning grants is a key source of resources.
Yet we know little about how grant panels assess software
contributions, including how they assess use and impact
measures in considering awarding grants. Research could
assess how grant applicants make use of different impact
measures (such as citation rates, user numbers, and
resource utilization claims) and, potentially, examine
panel summaries or even discussion to understand which
measures are considered credible and relevant and which

Figure 3. (a) The process of gathering citations related to nanoHUB.org, and (b) the web infrastructure that supports that process.

Understanding the scientific software ecosystem and its impact . 465



are not. Another research question would ask what aspects
of a project, its community, the use of the software, and
the structure of its surrounding ecosystem do evaluators
need to understand to make informed and successful deci-
sions about resourcing for projects. Similarly, research
could assess how potential scientific end-users of
software understand the resourcing (and thus likely sus-
tainability) of projects.

Other, more amorphous, sources of resources can be
grouped together under the concept of career success.
There are a number of anecdotal stories of career successes
and failures associated with software contributions in dif-
ferent communities. Generally speaking, discussions at
workshops have tended to focus on career failures rather
than successes, but systematic assessments have not been
attempted. A significant recent success is that the 2013
Nobel Prize in Chemistry included direct reference to
models, which were implemented by the CHARMM
software package that Martin Karplus, one of the laure-
ates, originally developed to do his work with models.
Research effort could assess career paths, particularly
focusing on the ways in which claims of impact have
been used within tenure cases and other evaluations
within science (such as in national labs and supercomput-
ing centers). The altmetrics community, particularly the
Impact Story project, has worked to assist scientists to
tell the story of their impact beyond individual publica-
tions and to include these on their academic CVs
(Piwowar and Priem 2013).

4. Conclusion and policy recommendations

In the discourse on scientific infrastructure, there is an
often-held goal of providing infrastructure, including
software, that is so easy-to-use and seamless that the in-
frastructure becomes invisible; it ‘gets out of the way’ so
much that users don’t perceive its existence. This under-
standing of the nature of successful infrastructure is shared
by work in science and technology studies, describing the
invisibility of infrastructure and the work that maintains it
(Star and Strauss 1999). Yet descriptions of successful in-
frastructures are descriptions of an endpoint, not a
strategy for achieving that endpoint. While it is true and
useful to say that electricity, as an infrastructure, is largely
invisible to its users, it is far from true to think that those
building that infrastructure, especially in the early days,
ever wanted it to be that way. In fact, as Marvin (1988)
and others have shown, particularly when discussing the
Chicago World’s Fair, electricity in its early days was a
gaudy, showy affair, built to impress and explicitly
demonstrate. The route to invisibility was anything but
invisible.

The measurement techniques in this article, used together,
would increase the visibility of the use, the role, and the
consequentiality of scientific software. Nonetheless, the

interests of the various players in the scientific software eco-
system that we have identified will be served differently by
different techniques. Further, the techniques themselves
often require trade-offs that impose responsibilities or
perceived inconveniences on some players (such as scientific
end-users or system administrators) to provide insight that
is of most interest to other players (such as science funders
or component-producing projects). This is particularly true
of techniques that extend around the process model we
describe above, linking different phases of the impact
cycle. Accordingly, the implementation of more advanced
techniques will require a collective effort of understanding
and balancing interests in the scientific software ecosystem.
Still, much can be done already, using techniques that
closely align effort and interest in the information to be
collected and analyzed.

Accordingly, we break our recommendations into two
groups. First we make recommendations to ecosystem par-
ticipants to help answer their questions revealed in our
fieldwork, while producing data likely to be useful more
broadly. These have the advantage of being well motivated
and amenable to local action. For some, they require
further sharing of data to be useful for broad-based
research evaluation, although the recommendations to
ecosystem stewards aim to create circumstances that will
prompt that sharing. Second, we make recommendations
as to goals for longer-term collective action that address
the overall aims of research evaluation (while drawing on,
or seeking to usefully alter, the local motivations of eco-
system participants). Table 1 shows recommendations for
ecosystem participants; we turn to longer-term recommen-
dations for collective goals in the text that follows.

The table above shows recommendations that can be
acted on by individual players in different positions in
the software ecosystem. These recommendations have the
advantage of being well motivated since they are tech-
niques to answer the specific questions of those in ecosys-
tem roles, while simultaneously producing data that are of
interest to other roles and to the overall practice of
research evaluation.

However many of these are limited in their ability to
‘reach around’ the framework presented earlier in our
article. For example, software component producers can
attempt to collect data on impact through publications but
that succeeds only to the extent that they can rely on users
to mention software in publications. In turn, this relies on
policies enacted by journals and funders to standardize
and incentivize users. Similarly, ecosystem managers
seeking to draw on usage data to plan priorities for
funding efforts rely on actions to be taken by both com-
ponent producers and users of scientific software. Finally,
because much software use is indirect through software
dependency (and therefore hidden from the user and any
potential evaluator), there is a need to collect software
dependency information broadly and to link it to many
of the measures above (particularly impact measures).

466 . J. Howison et al.



Table 1. Questions and concerns of ecosystem participants and recommendations for addressing them that tends to produce broadly useful data

Scientific end-users

What software did those in my

lab use and how did we

configure it?

Use source code control systems and make all data available for analysis.

Use Lab Information Management Systems and workflow systems.

Use package management systems for dependencies wherever possible, and make dependency data available.

What software are my colleagues

using? What software are

reviewers comfortable with?

Encourage colleagues to make their software use visible in publications and presentations.

Publish in journals with software citation policies and follow them.

How should I acknowledge my

use of scientific software?

Examine the project documentation for a request for citation and/or license conditions.

Publish in journals with software citation policies and follow them.

Software component producers

Who uses our software

and how?

Have an explicit strategy for user survey

Consider limiting distribution to known channels, record logs to count, and analyze downloads

Instrument software with reporting that balances user competitive concerns with need to demonstrate

project impact

How have we contributed to

the science of others? Is our

work visible in the scientific

literature?

Make obvious and explicit, standard requests for citation (don’t rely on users knowing what to do);

consider pushing this request into user workspace.

Implement regular literature searching (described above) to locate likely users and confirm with them.

Software execution environment and distribution managers

How has our execution environ-

ment contributed to Science?

As with software component producers, make explicit request for citation and monitor literature.

Who uses, or doesn’t use, what

components? Which versions

do they use? How frequently

do they update?

Inspect code running within computational jobs, not merely the metadata of the job (user, time, utilization).

Distributions can inspect component use on end-user systems (as with Debian Popularity Contest)

Visualize component use over time.

Make aggregated visualizations available to users (to encourage coalescence and use of updated components)

Ecosystem stewards

What funding has gone toward

producing which software

components?

Ensure that project reporting systems include software components, ideally with separate links to primary

codebase and community support and distribution venues (provides a template for project organization).

Consider providing standard distribution practices (e.g., providing repositories or ‘blessing’ appropriate

repositories).

Who is using which software? Require projects to develop and report their plans for understanding the use of their code. Help projects

(and their users) see importance of measuring use.

Ensure that reporting is regular (allowing midcourse corrections)

Incentivize other ecosystem participants to follow the recommendations above, and provide central

locations into which their data can be shared.

Which areas need targeted

funding? Are particular

components, or layers of

components, missing?

Analyze available workflows that link components together; are there locations across workflows with

bespoke components?

Ask funded hosted environments (e.g., clouds/grids) to provide aggregated and appropriately

anonymized data on code running on them as a condition of their funding.

Change usage agreements for hosted facilities to facilitate analysis of jobs while attending to competitive

exposure (e.g., aggregation techniques).

Encourage and fund software distributions; require funded projects to make code available through distributions.

What are the scientific impacts

of software use?

Work with publishing venues to ensure appropriate software visibility (esp. software citation policies).

Provide template processes for funded projects to measure impact.

Work directly with intended user-communities and social scholars of science to document software impact.

Do projects have sufficient

resources and skills to

handle their growth?

Monitor use metrics and watch for ‘phase changes’ (rapid growth in use), proactively assess project

organization and funding levels.

Are projects on a path to

sustainability?

Revise reporting requirements to assess community health of the project:

. Does the project have contributors outside those directly funded?

. Does the project actively encourage contribution and are offered contributions integrated?

. Are project venues open and transparent?

. Do projects make explicit and clear request for acknowledgment?

Are software-contributing

scientists achieving

appropriate credit and

successful career progression?

Conduct scientific workforce studies: Where do contributors come from? Where do they go to?

Work with publication venues for appropriate software citation policies.

Understanding the scientific software ecosystem and its impact . 467



Thus, there is a need for coordinated action across dif-
ferent roles in the scientific software ecosystem toward
improved research evaluation and scientific practice. We
frame these as goals, rather than immediately actionable
recommendations, because they require community input
and development, and most likely, implementation
strategies specific to each scientific community. We
believe that the goals of coordinated action should focus
on solidifying each step around our framework, making
visible the links:

(1) develop improved reporting requirements for grants
to make clear the connection between research
funding and software products, including require-
ments for how software is made available;

(2) establish the norm that that software component pro-
ducers have a responsibility to collect data about the
usage and impact of their software;

(3) build an expectation that execution environments
should write their usage agreements in such a way
that makes aggregated and anonymized usage data
available and the norm that the user’s confidentiality
requirements balance against the need to collect
useful data;

(4) establish and collectively enforce clear policies for
mentioning software that contributed to scientific
results in publications;

(5) build a cultural understanding among users of the
importance of appropriate acknowledgment of
software contributions; and

(6) Work to improve the rewards available to those
making key software contributions (perhaps including
establishing well-funded prizes to reward nongrant
funded software work).

The appropriate route to realize these goals collectively
must involve widespread community consultation appro-
priate to individual scientific fields; accordingly, traditional
venues such as agency-funded workshops will play a
role, as might high-level ‘blue-ribbon’ panels the UK’s
Scientific Software Sustainability Institute shows a way
forward here. Bottom-up approaches will play a role as
well, particularly connecting with the movement toward
‘open science’, including movements such as Mozilla’s
Science Lab (https://wiki.mozilla.org/ScienceLab) and exe-
cutable papers, drawing on its energy and ability to shape
norms for younger scientific practitioners. Each scientific
field, together with its funding agencies, will need to find
appropriate ways forward. In any case, though, the recom-
mendations for immediate action in the table above should
tend toward demonstrating the potential in creating the
data and then in sharing it for ecosystem-level insights.

Accordingly, policy-makers can encourage new research
that draws on these emerging information sources to
improve the understanding of ecosystem functioning.
This may include additional funding programs targeted
at researchers from fields such as social network analysis

and management and strategy, as well as experienced
survey researchers. Other innovative approaches might
include creating a machine learning challenge toward
recognizing software in publications, drawing in new
constituencies interested in advancing understanding of
the scientific software ecosystem.

Similarly, there is a need for research in the field of
research evaluation on the relative costs and benefits of
different measures, in different locations around the cycle
and the software ecosystem. For example, the efforts by
nanoHub to locate papers that drew on their project, dis-
cussed above, require the time of many students to assess
papers for nanoHUB impact. While this time with the lit-
erature is of ancillary benefit to the students, it is not clear
what the cost trade-off is in improving the measurement of
impact. Similarly some of the metrics discussed are more
invasive than others, raising questions about privacy or
confidentiality (e.g., automated insight into ‘backstage’
software use and examination of consideration of impact
in peer review of software focused grants). The trade-off
here is not in financial terms, but in terms of the
potential controversy and dissatisfaction of scientists,
compared with the value of data collected; it may be that
communities establish new norms of transparency, but
their imposition from outside is unlikely to be well
received, undermining trust and perhaps other efforts.
Financial trade-offs are, of course, also relevant: some of
the metrics proposed in this article are likely to be more
costly than others, while producing information of differ-
ent quality. There is a need to investigate this further,
examining the cost, context, and information quality
from different measures enable those interested in
research evaluation to prioritize the further development
of particular measures.

In conclusion, this article has argued that the central
and still growing importance of software to the collective
achievement of science requires a response from those
interested in understanding scientific practice, among sci-
entists themselves, those building infrastructure for scien-
tists, and those seeking insight at the policy level, especially
for research evaluation. Albeit primarily drawing on the
context of the USA, we have provided empirical insights
into what information needs to exist and a framework for
understanding those needs and how they interact. Finally,
we have provided a practical overview of existing measure-
ment techniques and highlighted areas of policy and col-
lective-action challenge for the research evaluation of
scientific software. Realizing the potential for software to
improve science demands no less.

Funding

This material is based in part upon work supported by
the US National Science Foundation under Grant Nos.
09-43168, 10-64209, 11-48515, 02-28390, and 06-34750.

468 . J. Howison et al.

https://wiki.mozilla.org/ScienceLab


Note

1. We are indebted to an anonymous reviewer for high-
lighting the potential importance of ‘dark effort’.

References

Atkins, D. (2003). Report of the National Science Foundation
Blue-Ribbon Advisory Panel on Cyberinfrastructure <http://
www.nsf.gov/od/oci/reports/toc.jsp>.

Barbera, R. et al. (2012). ‘Gustav: CPU accounting for
small-sized grid infrastructures’, International Journal of
Grid Utility Computing, 3/2-3: 89–96. DOI: 10.1504/
IJGUC.2012.047759.

Berente, N., Howison, J. and King, J. L. (2013). Report on
Workshop on ‘Managing Cyberinfrastructure Centers’.
University of Georgia <http://managingcenters.net/>.

Bietz, M. J., Baumer, E. P. and Lee, C. P. (2010). ‘Synergizing
in cyberinfrastructure development’, Computer Supported
Cooperative Work, 19/3-4: 245–81. DOI: 10.1007/s10606-
010-9114-y.

Brown, D. A. et al. (2007). ‘A case study on the use of
workflow technologies for scientific analysis: gravitational
wave data analysis’, in Taylor I. J. et al. (eds) Workflows
for e-Science, pp. 39–59. London: Springer.

Carver, J. C. (2009). ‘First international workshop on software
engineering for computational science and engineering’,
Computing in Science and Engineering, 11/2: 11.

Contractor, N. (2013). ‘Moneyball for nanoHUB: theory-driven
and data-driven approaches to understand the formation and
success of software development teams’, in Daniel F., Wang
J. and Weber B. (eds) Business Process Management, Lecture
Notes in Computer Science, pp. 1–3. Berlin Heidelberg:
Springer.

Deelman, E. et al. (2004). ‘Pegasus and the pulsar search: from
metadata to execution on the grid’, in Wyrzykowski, R. et al.
(eds) Parallel Processing and Applied Mathematics, Lecture
Notes in Computer Science, pp. 821–30. Berlin, Germany:
Springer.

——. (2005). ‘Pegasus: a framework for mapping complex sci-
entific workflows onto distributed systems’, Scientific
Programming, 13/3: 219–37.

De Roure, D. et al. (2009). ‘Towards open science: the
myExperiment approach’, Concurrency and Computation:
Practice and Experience, 22/17: 2335–53.

Furlani, T. R. et al. (2013). ‘Performance metrics and auditing
framework using application kernels for high-performance
computer systems’, Concurrency and Computation: Practice
and Experience, 25/7: 918–31. DOI: 10.1002/cpe.2871.

Gawer, A. and Cusumano, M. A. (2008). ‘How companies
become platform leaders’, MIT Sloan Management Review,
49: 28–35.

Goecks, J. et al. (2010). ‘Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent compu-
tational research in the life sciences’, Genome Biology, 11/8:
R86. DOI: 10.1186/gb-2010-11-8-r86.

Hadri, B. et al. (2012). ‘Software usage on Cray systems across
three centers (NICS, ORNL and CSCS)’, Proceedings of the
Cray User Group Conference (CUG 2012), Stuttgart,
Germany.

Howison, J., Berente, N. and King, J. L. (2013). ‘From loss to
gain: exploiting diaspora in cyberinfrastructure enterprises’,
Presented at the Atlanta Conference on Science and
Innovation Policy, September 26, Atlanta, GA.

Howison, J. and Crowston, K. (2014). ‘Collaboration through
open superposition: a theory of the open source way’, MIS
Quarterly, 38/1: 29–50.

Howison, J. and Herbsleb, J. D. (2011). ‘Scientific software
production: incentives and collaboration’, Proceedings of the
ACM Conference on Computer Supported Cooperative
Work, pp. 513–22, Hangzhou, China. DOI: 10.1145/
1958824.1958904.

Howison, J. & Herbsleb, J. D. (2013). ‘Incentives and
integration in scientific software production. In’, Proceedings
of the ACM Conference on Computer Supported Cooperative
Work (pp. 459470). San Antonio, TX. http://doi.org/10.
1145/2441776.2441828.

Howison, J., & Bullard, J. (in press). ‘Software in the scientific
literature: Problems with seeing, finding, and using software
mentioned in the biology literature’, Journal of the Association
for Information Science and Technology (JASIST). Retrieved
from http://dx.doi.org/10.6084/m9.figshare.1146366.

Katz, D. S. (2014). ‘Transitive credit as a means to address
social and technological concerns stemming from citation
and attribution of digital products’, Journal of Open
Research Software, 2/1: e20. DOI: 10.5334/jors.be.

Litzkow, M. J., Livny, M. and Mutka, M. W. (1988). ‘Condor-a
hunter of idle workstations’, Presented at the 8th International
Conference on Distributed Computing Systems, pp. 104–11.
San Jose, CA, USA DOI: 10.1109/DCS.1988.12507.

Madhavan, K., Zentner, M. and Klimeck, G. (2013). ‘Learning
and research in the cloud’, Nature Nanotechnology, 8/11: 786–
9. DOI: 10.1038/nnano.2013.231.

Marvin, C. (1988). When Old Technologies Were New. Oxford:
Oxford University Press.

McCullough, B. D., McGeary, K. A. and Harrison, T. D.
(2006). ‘Lessons from the JMCB archive’, Journal of
Money, Credit, and Banking, 38/4: 1093–107.

McLay, R. and Cazes, J. (2012). Characterizing the Workload
on Production HPC Clusters (Working Paper). Texas
Advanced Computing Center.

McLennan, M. and Kennell, R. (2010). ‘HUBzero: a platform
for dissemination and collaboration in computational science
and engineering’, Computing in Science and Engineering, 12/2:
48–53. DOI: 10.1109/MCSE.2010.41.

Morin, A. et al. (2013). ‘Collaboration gets the most out of
software’, eLife, 2. DOI: 10.7554/eLife.01456.

Penfield, T. et al. (2014). ‘Assessment, evaluations, and defin-
itions of research impact: a review’, Research Evaluation, 23/
1: 21–32. DOI: 10.1093/reseval/rvt021.

Piwowar, H. (2013). ‘Altmetrics: value all research products’,
Nature, 493/7431: 159. DOI: 10.1038/493159a.

Piwowar, H. and Priem, J. (2013). ‘The power of altmetrics on a
CV’, Bulletin of the American Society for Information
Science and Technology, 39/4: 10–13. DOI: 10.1002/
bult.2013.1720390405.

Renfro, C. G. (2004). ‘A compendium of existing econometric
software packages’, Journal of Economics and Social
Measurement, 29: 359–409.

Rigby, J. (2011). ‘Systematic grant and funding body acknow-
ledgement data for publications: new dimensions and
new controversies for research policy and evaluation’,
Research Evaluation, 20/5: 365–75. DOI: 10.3152/
095820211X13164389670392.

Rogers, J. D. (2013). ‘Introducing the special section theme:
recent developments in data sources and analysis for R&D
evaluation’, Research Evaluation, 22/5: 269–71. DOI: 10.1093/
reseval/rvt027.

Star, S. L. and Strauss, A. (1999). ‘Layers of silence, arenas of
voice: the ecology of visible and invisible work’, Computer
Supported Cooperative Work (CSCW), 8/1: 2–30.

Understanding the scientific software ecosystem and its impact . 469

http://www.nsf.gov/od/oci/reports/toc.jsp
http://www.nsf.gov/od/oci/reports/toc.jsp
http://managingcenters.net/
http://doi.org/10.1145/2441776.2441828
http://doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.6084/m9.figshare.1146366


Stewart, C. A., Almes, G. T. and Wheeler, B. C. (eds). (2010).
NSF Cyberinfrastructure Software Sustainability and
Reusability Workshop Report. This is hosted on Indiana
University’s institutional repository: https://scholarworks.iu.
edu/dspace/handle/2022/6701

Stodden, V. et al. (2010). ‘Reproducible research’, Computing in
Science and Engineering, 12/5: 8–13.

Tasker, E. J. et al. (2008). ‘A test suite for quantitative com-
parison of hydrodynamic codes in astrophysics’, Monthly
Notices of the Royal Astronomical Society, 390: 1267–81.
DOI: 10.1111/j.1365-2966.2008.13836.x.

Thain, D., Tannenbaum, T. and Livny, M. (2006). ‘How to measure
a large open-source distributed system’, Concurrency and
Computation: Practice and Experience, 18/15: 1989–2019.

Van de Geijn, R. A. (1997). Using PLAPACK–Parallel Linear
Algebra Package. Cambridge, MA: MIT Press.

Wagstrom, P. et al. (2010). ‘The impact of commercial organ-
izations on volunteer participation in an online community’,
Presented at the Academy of Management Conference (OCIS
Division), August 6, Montréal, Canada.

Weick, K. E. (1989). ‘Theory construction as disciplined imagin-
ation’, Academy of Management Review, 14/4: 516–31.

Wiggins, A., Howison, J. and Crowston, K. (2009).
‘Heartbeat: measuring active user base and potential user
interest in floss projects’, in Boldyreff C. et al. (eds)
Proceedings of 5th IFIP WG 2.13 International Conference
on Open Source Systems (OSS 2009), pp. 94–104. Skövde,
Sweden: Springer.

Wilkins-Diehr, N. et al. (2008). ‘TeraGrid science gateways and
their impact on science’, Computer, 41/11: 32–41. DOI:
10.1109/MC.2008.470.

470 . J. Howison et al.

https://scholarworks.iu.edu/dspace/handle/2022/6701
https://scholarworks.iu.edu/dspace/handle/2022/6701

